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Unsteady separation processes at large finite, Reynolds number, Re, are considered,
as well as the possible relation to existing descriptions of boundary-layer separation
in the limit Re → ∞. The model problem is a fundamental vortex-driven three-
dimensional flow, believed to be relevant to bursting near the wall in a turbulent
boundary layer. Bursting is known to be associated with streamwise vortex motion,
but the vortex/wall interactions that drive the near-wall flow toward breakdown have
not yet been fully identified. Here, a simulation of symmetric counter-rotating vortices
is used to assess the influence of sustained pumping action on the development of a
viscous wall layer. The calculated solutions describe a three-dimensional flow at finite
Re that is independent of the streamwise coordinate and consists of a crossflow plane
motion, with a developing streamwise flow. The unsteady problem is constructed to
mimic a typical cycle in turbulent wall layers and numerical solutions are obtained
over a range of Re. Recirculating eddies develop rapidly in the near-wall flow, but
these eddies are eventually bisected by alleyways which open up from the external
flow region to the wall. At sufficiently high Re, an oscillation was found to develop in
the streamwise vorticity field near the alleyways with a concurrent evolution of a local
spiky behaviour in the wall shear. Above a critical value of Re, the oscillation grows
rapidly in amplitude and eventually penetrates the external flow field, suggesting
the onset of an unstable wall-layer breakdown. Local zones of severely retarded
streamwise velocity are computed which are reminiscent of the low-speed streaks
commonly observed in turbulent boundary layers. A number of other features also
bear a resemblance to observed coherent structure in the turbulent wall layer.

1. Introduction
The processes involved in unsteady boundary-layer separation and transition to

turbulence in wall-bounded flows have been of considerable interest for some time.
An important related process is the regeneration of turbulence in boundary layers
through the breakdown of the near-wall flow in the form of strong localized eruptions
(see, for example, Smith et al. 1991). Despite a wealth of detailed experimental studies
over the past several decades, the nature of the physical mechanisms involved in
turbulence regeneration remains controversial and several interpretations have been
given by Panton (1997). A recurrent theme in the turbulence literature is a suspected
presence of counter-rotating streamwise vortices in the near-wall flow, although cause
and effect relationships, and even the existence of such vortices, are uncertain. It
is known that when counter-rotating vortices are close to a wall at infinite Re, the
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viscous flow near the surface will break down in a sharply focused eruption (Ersoy &
Walker 1986; Herzog & Walker 1988; Smith et al. 1991). Here, the main objective is
to consider the wall-layer response to the sustained presence of streamwise vortices by
consideration of solutions of the Navier–Stokes equations at finite Re; these equations
describe the instantaneous flow in the turbulent wall layer when appropriate scaled
variables are employed (Walker 1990). In this manner, the high-Reynolds-number limit
can be approached systematically from below to ascertain whether other mechanisms
of wall-layer breakdown exist. The present results indicate that a vorticity instability
occurs at sufficiently high Reynolds numbers in a manner suggestive of the onset of
an eruptive state.

A prominent feature of turbulent boundary layers is the persistent presence of
‘low-speed streaks’ in the near-wall region; these streaks are relatively long zones in
the streamwise direction (compared to the spanwise spacing) where the instantaneous
streamwise velocity is retarded relative to the local mean (Kline et al. 1967; Smith
& Metzler 1983). For a majority of any time interval, the low-speed streaks may
be observed and the wall layer appears to be passively responding to events taking
place in the outer part of the boundary layer. At a certain stage, a streak may
become interactive with the outer region via a complex process that is not entirely
understood. In such an event, the streak is usually observed to lift away from the
wall intermittently and then begin to oscillate before a violent ejection into the outer
region occurs, in an event usually referred to as ‘bursting’. This ejection appears to
be the principal physical mechanism whereby new vorticity from the near-wall region
is fed intermittently into the outer region of the boundary layer.

The cause of the low-speed streaks has been controversial, but is believed to
be associated with the presence of vortex structures in the turbulence (Head &
Bandyopadhyay 1981; Smith et al. 1991; Robinson 1991; Smith & Walker 1995).
Counter-rotating streamwise vortex pairs can produce streaks, and this model has
been a common theme in the turbulence literature (see, for example, Bakewell &
Lumley 1967; Blackwelder 1983). Such pairs can transport relatively high-speed fluid
toward the wall where it is decelerated and accumulated at the outflow region
between the vortices. This low-momentum fluid would eventually be pumped away
from the surface and is thought to interact with the high-speed outer flow, to produce
a shear layer, as well as the instantaneous inflectional streamwise velocity profile
commonly observed in turbulent boundary layers; many authors (see, for example,
Stuart 1965) anticipate that this inflectional profile gives rise to a local flow instability
leading to bursting. However, there is evidence that an inflectional streamwise profile
can evolve without provoking wall-layer instability. Hamilton & Abernathy (1994)
suggested that while streamwise vortices will cause inflectional streamwise velocity
profiles, only vortices of sufficient strength will lead to wall-layer breakdown. Hall
& Horseman (1991), among others, have considered longitudinal vortex motion in
a steady boundary layer (and in particular the problem of Görtler vortices on a
curved wall) and show that an inflection point is not sufficient for instability in a
three-dimensional flow. Thus, the development of inflection points in the streamwise
velocity profile is not a general sufficient condition to trigger wall-layer breakdown.
The physical mechanism which actually produces instability remains unclear and
indeed there may be many routes to breakdown (Hall & Horseman 1991).

The basic vortex element in turbulent boundary layers is undoubtedly more compli-
cated than counter-rotating vortex pairs and is commonly believed to be the hairpin
vortex (see, for example, Acarlar & Smith, 1987a, b; Robinson 1991; Smith et al.
1991). Such vortices have a complex three-dimensional shape that distorts as the
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vortex is convected in a shear flow near the surface. As discussed by Smith & Walker
(1995), hairpin vortices have legs which move downward in the shear flow and be-
come stretched in the streamwise direction; the legs appear, locally at least, to be a
counter-rotating vortex pair. In essence, the low-speed streaks are the trails in the wall
layer of convecting hairpin vortices near the surface (Smith & Walker 1995). There is
good evidence that a hairpin vortex can regenerate itself as it travels downstream over
a wall (Robinson 1991; Smith et al. 1991; Haidari & Smith 1994; Asai & Nishioka
1995) through a viscous–inviscid interaction with the turbulent wall layer.

The present model is used to investigate the wall-layer response to a persistent
streamwise vortex motion at increasing values of Re with the intention of identifying
dynamical features in the developing wall layer which may be indicative of the onset
of an eruption. It is clear from visualization studies that the viscous flow induced by
even a single hairpin vortex is very complex with a rich mixture of lengthscales; this
makes good resolution of the associated wall-layer development impractical at high
Re owing to computer resource limitations. Thus, a simpler problem is considered
which allows solution of the Navier–Stokes equations at relatively high Re, using
a sufficiently fine computational grid to resolve intricate details of the developing
wall layer adequately under the influence of an array of counter-rotating streamwise
vortices, with the motion independent of the streamwise direction. To an extent, this
is an approximation of the flow produced by an array of pairs of stretched symmetric
hairpin vortex legs. The motion in the streamwise direction, and the initial conditions
for the present problem are selected to mimic conditions in a turbulent wall-layer
flow during the quiescent period between bursts (Walker et al. 1989). The Navier–
Stokes equations, in a suitably scaled form, contain a Reynolds number based on the
spanwise spacing of the vortices and a velocity characteristic of the strength of the
external vortex motion. Numerical solutions were carried out for increasing values
of Re for the motion in both the crossflow plane and the streamwise direction. The
results indicate that, at a critical Re, instability develops in the streamwise vorticity
field, and for sufficiently large Re, this instability grows and eventually corrupts the
external flow field. Consequently, the present results suggest another mode of wall-
layer breakdown occurring at finite Re, with many features being consistent with
observations of turbulent boundary layers.

Another topic related to the present study concerns two-dimensional separation
phenomena in general. Much research in this area has been associated with the circular
cylinder immersed in a uniform stream. This is the simplest bluff-body problem in
two dimensions and with the Reynolds number based on diameter, accurate steady
solutions of the Navier–Stokes equations may be obtained with increasing difficulty
up to around Re = 600 (Fornberg 1985), provided a condition of symmetry across
the downstream radius is enforced. At Re = 7, a pair of recirculating eddies appears
on the rear portion of the cylinder and, with increasing Re, these eddies grow to
around 13 cylinder diameters in length at Re = 600. This substantial growth in eddy
length makes accurate numerical solutions of the symmetric problem very challenging
because of difficulties associated with resolving important details in the far wake,
where the grid in a conventional cylindrical polar coordinate system becomes quite
skewed. The issue of whether a steady limit solution exists for the cylinder has been
addressed by a number of authors (see, for example Peregrine 1985; Smith 1985)
and the correct structure has been given by Chernyshenko (1988, 1998). The limit
solutions describe a very long and thick pair of eddies behind the cylinder.

In principle, the steady limit solution could be approached via a time-dependent
integration starting from an impulsive start, and this problem for Re→∞, has been
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considered by a number of authors, most notably Van Dommelen & Shen (1980, 1982).
At least the early stages of the boundary-layer development are well understood. A
pair of recirculating eddies soon develop near the rear stagnation point in a thin
viscous layer. A phenomenon of boundary-layer separation rapidly develops near the
upstream edge of the eddies wherein the boundary layer focuses into a narrow eruptive
plume that abruptly starts to leave the surface. As shown by Van Dommelen & Shen
(1980, 1982), a singularity occurs at this stage, and the spiky, eruptive response at
separation is the first time the evolving boundary layer starts to influence the external
inviscid flow region. As discussed in Elliott, Cowley & Smith (1983), and Cowley,
Van Dommelen & Lam (1990), this viscous response is expected to be generic in two-
dimensional boundary layers exposed to an adverse pressure gradient; indeed, similar
responses occur in vortex-induced boundary layers (Peridier, Smith & Walker 1991a)
and for the rotating circular cylinder immersed in a uniform stream (Degani, Walker
& Smith 1998). The issue of what happens next, in an expected interaction with the
external flow, has not been resolved. Van Dommelen (1981) has speculated that the
erupting boundary-layer spikes will roll up into a pair of vortices in an effectively
inviscid flow far from the cylinder surface (on the boundary-layer scale). This process
might be the first in a sequence of events leading toward the steady asymptotic state
described by Chernyshenko (1988), although the precise nature of such events is far
from evident. The situation is further complicated by the fact that the first interactive
stage contains a high-frequency instability (Cassel, Smith & Walker 1996), and this
appears to preclude continuation of the boundary-layer solution into the first stages
of interaction.

The present problem is related to the general nature of how the interactions
previously discussed take place at high Reynolds numbers. In the limit Re → ∞,
the present problem in the crossflow plane is equivalent to the boundary layer on
an impulsively started circular cylinder, which is known to terminate in a spiky
response. However, for finite Re, accurate Navier–Stokes solutions can be found at
relatively high values of Re, partly because the present vortex-driven problem is not
characterized by the enormous normal growth of the recirculating regions that occur
for the circular cylinder. An issue of interest here then concerns the range of Reynolds
numbers, if any, for which a spiky response starts to evolve in the Navier–Stokes
solutions. Spiky eruptions and roll-up into vortex structures have been observed in
various experiments (see, for example, Smith et al. 1991; Doligalski, Smith & Walker
1994; Smith & Walker 1995), but, thus far, such eruptions have been difficult to
compute accurately at high, but finite, Reynolds numbers; the complexity of such
events clearly has something to do with this, but the important question remains as to
whether or not a smooth transition with increasing Reynolds number can be computed
using the Navier–Stokes equations into the spiky boundary-layer eruptions predicted
by Van Dommelen (1981) and Elliott et al. (1983) (see also Cassel et al. 1996). The
present results suggest that such a transition is not possible because an instability is
encountered in the vorticity field that grows at sufficiently high Reynolds numbers and
ultimately spreads to the external flow field. Extensive numerical calculations carried
out here suggest strongly that this instability is physical, as opposed to numerical;
the onset and characteristics of this instability are documented in some detail.

2. Computational model
The model problem with counter-rotating vortex pairs spaced periodically in the

spanwise direction is shown schematically in figure 1. The (y+, z+) plane is termed
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Figure 1. Schematic diagram of the assumed wall-layer structure.

the ‘crossflow’ plane and is normal to the streamwise direction. Scaled coordinates y+

and z+ consistent with turbulent wall-layer scalings are

y+ =
yuτ

ν
, z+ =

zuτ

ν
, (1)

where uτ is the local mean friction velocity defined by uτ = (ν∂ū/∂y)1/2 evaluated at
the wall y = 0; here, ū is the time-mean streamwise velocity and ν is the kinematic
velocity. The vortex motion depicted in figure 1 draws high-speed fluid from the outer-
flow region towards the wall near z+ = ± 1

2
λ+ where it is decelerated to meet the

no-slip condition. The counter-rotating motion accumulates low-speed fluid near the
upflow planes at z+ = 0,±λ+, thereby producing low-speed wall-layer streaks aligned
in the streamwise direction similar to those seen in visualization studies of turbulent
boundary layers. The streaks are observed to have an average dimensionless spanwise
spacing λ+ = λuτ/ν of around 100, where λ is the mean streak spacing (Kline
et al. 1967; Smith & Metzler 1983). Since the streaks are generally elongated in
the streamwise direction with a typical length of the order of 1000 ν/uτ or more, the
scale in the streamwise (x) direction is taken here to be much larger than that in the
spanwise and wall-normal directions. The scaled streamwise coordinate is x+ = x/Lx,
where Lx is a characteristic length in the x direction such that Lx � ν/uτ. During
a typical quiescent period in the wall layer, when the flow is relatively well-ordered
and strong interactions with the outer-flow region do not occur locally, the following
scaled velocities are appropriate (Walker et al. 1989)

u+ =
u

uτ
, v+ =

v

uτ
, w+ =

w

uτ
. (2)

These scalings are based on the fact that measured turbulent intensities u′2, v′2, w′2
and the Reynolds stress −u′v′ are generally O(u2

τ) in the wall layer (see, for example,
Hinze 1975). Substitution of the scalings defined in equations (1) and (2) into the
Navier–Stokes equations for incompressible flow yields

∂u+

∂t+
+ v+ ∂u

+

∂y+
+ w+ ∂u

+

∂z+
= −p+ − ∂p0

∂x+
+
∂2u+

∂y+2
+
∂2u+

∂z+2
, (3)

∂v+

∂t+
+ v+ ∂v

+

∂y+
+ w+ ∂v

+

∂z+
= − ∂p1

∂y+
+
∂2v+

∂y+2
+
∂2v+

∂z+2
, (4)
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∂w+

∂t+
+ v+ ∂w

+

∂y+
+ w+ ∂w

+

∂z+
= − ∂p1

∂z+
+
∂2w+

∂y+2
+
∂2w+

∂z+2
, (5)

∂v+

∂y+
+
∂w+

∂z+
= 0, (6)

to leading order, where t+ = u2
τt/ν is the scaled time. Here, the pressure is expanded

about the external mainstream pressure p∞(x) according to

p(x) = p∞(x) + pLx
u3
τ

ν
p0(x

+, t+) + ρu2
τp1(x

+, y+, z+, t+) + · · · . (7)

The pressure term p+ in equation (3) is the conventional quantity based on the
mainstream pressure gradient according to p+ = (ν/ρu3

τ) dp∞/ dx; p+ is assumed
known and normally is small. The variable p0 is a pressure term which might be
impressed across the wall layer by some large-scale disturbance in the outer-layer
flow, such as the convected head of a hairpin vortex; a balance of the leading-order
terms in the x momentum equation shows that p0 is a function of x+ and t+ at most.
Here, p+ and p0 are neglected in order to focus on the development of the streamwise
velocity due to an assumed streamwise vorticular motion in the outer-flow region.
The pressure p1 is a lower-order term resulting from motion that occurs between
streaks during the quiescent state (Walker et al. 1989).

Equations (3)–(6) represent the so-called ‘two-and-a-half dimensional’ form of the
Navier–Stokes equations and have been considered previously by Hatziavramidis &
Hanratty (1979), Chapman & Kuhn (1986), and Walker & Herzog (1988). These
equations may be regarded as approximating a flow that is slowly varying in the
streamwise direction. The crossflow plane problem, characterized by equations (4)–
(6), decouples from the streamwise velocity problem, but the solution for v+ and w+ is
then required to solve equation (3) for u+. The existence of almost uniformly spaced
wall-layer streaks aligned in the streamwise direction suggests that the spanwise flow
vanishes on planes that, on average, are normal to the wall and parallel to the
streamwise direction. The wall-layer development between a typical pair of streaks
taken to be located at z+ = 0 and z+ = λ+ (where w+ = 0 for all y+) is considered
here. For symmetric counter-rotating vortices, it is sufficient to study the model
problem between symmetry boundaries at z+ = 0 and z+ = 1

2
λ+. This approach limits

the spanwise extent of the problem and permits an efficient use of a computational
grid. In the wall-normal direction, the computational problem ranges from y+ = 0 to
y+ = y+∞, where y+∞ is the location of the computational outer boundary, taken large
enough to allow a smooth asymptotic transition of the wall-layer flow to an external
flow having the assumed form

u+ ∼ 1

κ
log y+ +

∞∑
n=0

{
Cn +

Dn

y+2
+ · · ·

}
cos

(
2nπ

y+
z+

)
, (8)

v+ ∼ 2π

λ+
W1y

+ cos

(
2π

λ+
z+

)
, w+ ∼ −W1 sin

(
2π

λ+
z+

)
, (9)

as y+ → ∞. Equations (9) describe a spanwise periodic flow over a typical cell from
z+ = 0 to z+ = λ+ that produces the alternate regions of upflow and downflow at the
base of the outer region, as shown in figure 1. Here, W1 is a constant proportional
to the average magnitude of the spanwise velocity near the outer edge of the wall
layer during a typical quiescent period and may be thought of as a measure of the
strength of the vortices assumed to be residing in the outer flow. The boundary
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conditions given by equations (9) satisfy the continuity equation and are therefore
asymptotically consistent for large y+. In equation (8), Cn and Dn are functions of t+

which can be determined numerically (Brinckman 1996). The boundary condition (8)
is selected in order that the streamwise velocity behaves in a manner consistent with
measurements which suggest that the instantaneous streamwise profile is logarithmic
in the turbulence near the wall; κ = 0.41 is the von Kármán constant. Note, however,
that condition (8) does not affect the crossflow motion, and indeed results similar
to those reported here for u+ were also obtained for external conditions other
than (8). Equations (9) represent the simplest outer boundary conditions that will
produce the periodic type of motion depicted schematically in figure 1 as y+ → ∞;
in principle, further terms in a Fourier series in equations (9) could be introduced,
but this additional complication was not implemented. In the present formulation,
the spanwise and wall-normal lengthscales in the wall-layer region are comparable,
requiring the solution of the Navier–Stokes equations (3)–(6). It may be noted that
Hatziavramidis & Hanratty (1979) and Chapman & Kuhn (1986) have also considered
periodic spanwise solutions of equations (3)–(6), but with different external conditions;
in the former work, periodic conditions were assumed in time such that the spanwise
velocity reversed direction during the course of the integration, whereas, in the latter
study, external conditions were introduced from a prior direct numerical simulation
of a more complex flow. Note that, in these studies, some of the external conditions
imposed were not asymptotically consistent for large y+ and this is believed to result
in various anomalies in their numerical solutions.

Here, the time-invariant condition provided by equations (9) produces a persistent
crossflow pumping action over a typical cycle in the wall layer. This model is consistent
with the notion of sustained streamwise vortex motion residing above the wall layer
during the quiescent period, which impresses a pressure field on the near-wall flow
during a period when there is no major viscous–inviscid interaction between the
wall-layer and outer-layer regions. The external boundary conditions were allowed to
drive the flow in the wall layer until either the numerical solution failed to converge
(generally owing to the onset of sharply localized activity), or because an outward-
growing wall-layer disturbance started to approach the computational boundary at
y+∞, thereby suggesting the onset of an interaction. The decoupling of the crossflow
and streamwise problems results in a two-dimensional form of the crossflow problem
which may be cast in a vorticity-streamfunction formulation with a streamwise
vorticity component ζ+

x (y+, z+, t+) and streamfunction ψ+(y+, z+, t+) defined by

ζ+
x =

∂w+

∂y+
− ∂v+

∂z+
, v+ = −∂ψ

+

∂z+
, w+ =

∂ψ+

∂y+
. (10)

It is convenient to introduce the following scaled variables

Y =

(
2πW1

λ+

)1/2

y+, V =

(
λ+

2πW1

)1/2

v+, Z =
2π

λ+
z+, W =

w+

W1

, (11)

Ψ =

(
2π

W1λ+

)1/2

ψ+, ζ =
1

W1

(
λ+

2πW1

)1/2

ζ+
x . (12)

Balancing the time derivative in the streamwise vorticity with the wall-normal diffusion
term suggests the following time scaling

τ =
2πW1

λ+
(t+ + t+0 ), (13)
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where t+0 is a small parameter which is introduced to accommodate the form of
the initial condition that will be discussed subsequently. It is easily shown that the
cross-flow problem, (4)–(6), becomes

∂ζ

∂τ
+ V

∂ζ

∂Y
+W

∂ζ

∂Z
=

∂2ζ

∂Y 2
+

1

Reλ

∂2ζ

∂Z2
, (14)

∂2Ψ

∂Y 2
+

1

Reλ

∂2Ψ

∂Z2
= ζ, (15)

while the streamwise momentum equation (3) is

∂u+

∂τ
+ V

∂u+

∂Y
+W

∂u+

∂Z
=
∂2u+

∂Y 2
+

1

Reλ

∂2u+

∂Z2
, (16)

where Reλ = W1λ
+/2π is the Reynolds number for the problem.

The scaled computational problem extends from Z = 0 to π (z+ = 0 to 1
2
λ+) and

from Y = 0 to some large value of Y . On the symmetry boundaries, relations are
applied of the form

Ψ = 0, ζ = 0,
∂u+

∂Z
= 0 at Z = 0, π, (17)

while on the wall

Ψ = 0,
∂Ψ

∂Y
= 0, u+ = 0 at Y = 0. (18)

The asymptotic conditions to be satisfied are

Ψ s −Y sinZ + · · · , ζ s
Y

Reλ
sinZ + · · · as Y →∞. (19)

A direct application of the asymptotic form (8) for u+ gave rise to a problem
under certain circumstances on the outflow side of the crossflow plane (near Z = 0),
where the streamwise velocity became increasingly retarded with time. Here, small
oscillations about a well-defined mean eventually occurred (after substantial integra-
tion times) between successive vertical mesh points at large Y over a small range
of spanwise stations where recirculating flow occurred in the crossflow plane near
the wall. Such oscillations persisted when the computational boundary was extended
outward substantially, and the mesh was further refined. The origin of this anomaly is
not obvious, but appears to be a weak local numerical instability. After considerable
effort aimed at alleviating the problem, a compatible derivative boundary condition

∂u+

∂Y
∼ 1

κY
+ O

(
1

Y 3

)
as Y →∞, (20)

was used. Comparisons of the results produced using the boundary conditions (8)
and (20) showed that the streamwise velocity behaviour within the wall layer itself
was essentially identical. The only differences were in a small spanwise range near
the outer computational boundary where calculations using equation (20) produced
a smooth profile consistent with the mean position of the weakly oscillating profile
obtained using equation (8).

The initial conditions at t+ = 0 selected in the present study, model a high-speed
streamwise flow containing counter-rotating streamwise vortex pairs which penetrate
close to the wall at the initiation of the motion; they are selected to mimic a sweep
event following a burst. The motion in the crossflow plane at the start of the cycle
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t+ = 0 is soon dominated by the abrupt appearance of the counter-rotating motion
in the external flow, initiated in an otherwise stagnant crossflow plane motion in the
wall layer. Other initial conditions could be assumed (Walker et al. 1989), but because
of the rapid dominance of the external vortex flow, more elaborate initial conditions
were not considered extensively.

For t+ > 0, an unsteady viscous wall layer grows on the surface. For small t+, the
wall layer is very thin and thus the Rayleigh variable χ was introduced, where

χ =
y+

2
√
t+ + t+0

=
Y

2
√
τ
, (21)

is O(1) only at locations close to the wall for small t+. Here, the parameter t+0 is
introduced so that χ is finite for all y+ at t+ = 0. Based on considerations of the
mean profile for typical turbulent wall-layer flows, Walker et al. (1986, 1989) show
that t+0 must be small and for flow at constant pressure, t+0 = 0.00801; this value
was used throughout the present study. Note that a small value of t+0 implies that
the logarithmic behaviour in the streamwise profile (8) penetrates close to the wall
initially. For t+ & 0, V and W are small, vorticity transport is mainly diffusion away
from the wall and equation (14) may be approximated closely by

∂ζ

∂τ
=
∂2ζ

∂Y
2 . (22)

A solution of equation (22) consistent with the conditions (9) describes the motion in
a thin Rayleigh layer having thickness O(t+0 )1/2 as t+ → 0 and is given by

ζ =

{
Y

Reλ
− 1√

πτ0

e−χ
2

}
sin (Z), (23)

at t+ = 0 (i.e. at τ = τ0,where τ0 = 2πW1t
+
0 /λ

+). Note the external flow is rotational
with a weak linear component of vorticity.

The initial condition adopted for the streamwise velocity simulates the wall-layer
velocity profile at an instant nearing the end of the sweep event and the onset of the
quiescent period. For small t+, equation (16) is closely approximated by

∂u+

∂τ
=
∂2u+

∂Y 2
, (24)

and the solution of this equation which satisfies the no-slip condition at the wall and
also behaves logarithmically for large y+according to

u+ ∼ 1

κ
log y+ + Ci + · · · , (25)

is given by Walker et al. (1989) as

u+(Y ,Z, τ0) =

{
1

2κ
log (t+0 ) + Ci − 1

κ

(γ0

2
− log 2

)}
erf (χ) +

4

κ
√
π
Ξ(χ), (26)

where γ0 = 0.57721 is Euler’s constant and Ξ(x) is defined as

Ξ(χ) =

∫ χ

0

exp(−ς2)

∫ ς

0

exp(−α2)

∫ α

0

exp(−t2) dς dα dt. (27)

For various properties of this function, see Walker & Scharnhorst (1986). The con-
stants Ci and κ are often assumed to have universal values of 5.0 and 0.41, respectively,
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and for these values, t+0 = 0.00801. The initial profile (26) is logarithmic almost all

the way to the wall at t+ = 0 (τ = τ0), except in a thin layer having thickness O(t
+1/2
0 ),

and simulates the streamwise velocity at the beginning of a local quiescent state.
Three-dimensional terms could be added as a Fourier cosine series in Z; this extra
complication was not adopted in most of the calculations, since the main interest was
to determine the influence of the evolving crossflow plane motion.

3. Numerical solution method
Solutions to the model problem were produced at successively larger values of Reλ

by maintaining λ+ = 100 and increasing the characteristic crossflow velocityW1. Initial
calculations were performed using a uniform mesh in the Z-direction. A non-uniform
mesh in the normal direction was employed which concentrated points near the wall,
and at the same time permitted the computational boundary to be at large Y , thereby
facilitating a smooth transition to the asymptotic boundary conditions. As Reλ was
increased, the need for a non-uniform mesh in the spanwise direction became clear.
The wall layer began to exhibit intense local spanwise gradients, which developed
in zones of recirculation that formed near the surface, especially in the ‘alleyways’
that ultimately bisected the backflow regions; these alleyways will be described in
detail subsequently. From preliminary uniform mesh calculations, a point Z0 was
identified where the spanwise mesh spacing should be decreased in order to resolve
the developing severe spanwise variations. A non-uniform (Y ,Z) mesh was then
produced by mapping the (Z, Y )-plane to a computational (ξ, η)-plane according to
the functions

η =
2

π
tan−1

(
Y

b

)
, ξ = q +

1

β
sinh−1

((
Z

Z0

− 1

))
sinh (βq), (28)

where q is a constant defined by

q =
1

2β
log

(
1 + (eβ − 1)Z0/π

1 + (e−β − 1)Z0/π

)
. (29)

In computational space, uniform mesh sizes were then used. Here, β and b are
parameters which control the spanwise and wall-normal concentration of mesh points
in physical space near Z0 and Y = 0, respectively, with larger values of β and smaller
values of b implying reduced mesh sizes local to Z0 and Y = 0; as a calculation
proceeds, the region of developing spanwise intense variation may shift, and this
can be accommodated by stopping the calculation, adjusting the value of Z0 and
then restarting the computation using interpolation. Note that the developing intense
spanwise variations are rather different from those encountered in the unsteady
separation phenomenon in the limit Reλ → ∞; in the latter situation, a focusing
of the viscous flow into a region of zero spanwise thickness eventually occurs, and
this behaviour requires the use of Lagrangian techniques to resolve the eruptive
behaviour adequately (Van Dommelen 1981; Peridier et al. 1991a). In the present
situation, intense spanwise variations do occur in certain regions of the flow and
ultimately lead to the evolution of an instability in the vorticity field. However, severe
focusing does not occur, and the flow details can be resolved adequately (with some
effort) using an Eulerian formulation with non-uniform mesh transformations.

The governing equations for the model problem were solved numerically over a
range of Reλ using both a finite-difference formulation and a spectral method. In
this section, the finite-difference method is described. The governing equations in the
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(ξ, η, τ) domain were discretized using a Crank–Nicholson scheme with conventional
central difference formulae for second-order spatial derivatives. The first-order spatial
derivatives in the convective terms in equations (14) and (16) were approximated by
second-order upwind differencing (see, for example, Peridier et al. 1991a). The method
is second-order accurate in both space and time.

The physical location of the outer computational boundary is obtained from
equation (28) as Ymax = b tan ( 1

2
πηmax) and was taken sufficiently large to ensure a

smooth asymptotic transition to the outer boundary condition for large Y ; to this
end, various solutions with different values of Ymax were computed and compared for
consistency. The value of Ymax could be decreased as Reλ was increased because the
wall layer becomes thinner at higher Reλ. The streamfunction–vorticity formulation
of the Navier–Stokes equations simplifies the crossflow problem by decoupling the
pressure calculation from the solution of the velocity field. However, the problem
of specification of the vorticity boundary condition then arises at a solid boundary.
In general, it is necessary to construct a method which generates information about
the wall vorticity from the available conditions, and many alternative approaches
exist in the literature. A number of these were tried in the present study, but
the interior constraint method described by Huang (1991) (see also Huang, Modi &
Seymour 1995; Huang & Seymour 1995) was found to be particularly effective. A brief
summary of the important details is given here for the uniform mesh calculations, and
the method for a non-uniform mesh can easily be inferred. Let i and j be mesh point
indices in the Z- and Y -directions, respectively. A central-difference approximation
to equation (15) at j = 2, using the condition Ψi,1 = 0 at Y = 0 yields

ζi,2 =
Ψi,3 − 2Ψi,2

∆Y 2
+

1

Reλ

Ψi+1,2 − 2Ψi,2 +Ψi−1,2

∆Z2
; (30)

in effect, this is used as a boundary condition along the line j = 2 for the vorticity
transport equation (14) in terms of current values of the streamfunction Ψ . The
wall vorticity at j = 1 was then evaluated from equation (15) using second-order
sloping-difference approximations for the Y derivatives and the boundary condition
Ψi,1 = 0, to yield

ζi,1 =
−5Ψi,2 + 4Ψi,3 −Ψi,4

∆Y 2
. (31)

The derivative boundary condition for Ψ on Y = 0 in equation (18) was approximated
with a second-order sloping three-point difference and this leads to 4Ψi,2 = Ψi,3, which
was used in the solution of the difference equations for Ψi,j . Consequently, in the
interior-constraint method the difference equations were solved in the domain j > 2
with conditions specified on j = 2. Boundary conditions on the symmetry boundaries
were handled in a conventional manner using central differences.

Finite-difference solutions for the vorticity ζ, streamfunction Ψ , and streamwise
velocity u+ were obtained using a Gauss–Seidel iteration procedure, which was more
robust and effective at achieving convergence for higher values of Reλ than various
alternating-direction-implicit methods which were also attempted. Iteration continued
at a timestep until the relative changes in the vorticity and streamfunction at each
mesh point were less than 10−4. It was found that the use of either under- or over-
relaxation had little effect on the convergence rate for the vorticity calculation. In
contrast, the streamfunction solution was extremely slow to converge once complex
recirculation regions developed in the crossflow plane, and the use of successive-
over-relaxation (SOR) proved to be important in obtaining converged results within
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practical computational times. For the solution of Poisson’s equation in a square
region discretized by an N × N mesh with zero conditions on the boundary, Hock-
ney (1970) gives the over-relaxation factor ω which produces the best asymptotic
convergence as the solution approaches zero error as

ωb =
2

1 + (1− µ2)1/2
, µ = cos (π/N). (32)

However, using ωb at the start of an iteration process can produce an error which may
initially grow before beginning eventually to decay to zero. A scheme for improving
the error decay is referred to by Hockney (1970) as the cyclic Chebyshev method,
wherein a variable over-relaxation factor ω is used. In this procedure a point-by-point
sweep of the mesh is performed in an odd/even order. First, all the odd points (those
for which (i + j) is odd) are corrected and then all the even points are updated in
a checker-board type of sweep of the mesh affecting every other point in each half
of the iteration process. The cyclic Chebyshev method changes the over-relaxation
factor ω every half iteration according to the following scheme (Hockney 1970)

ω(0) = 1, ω(1/2) = 1/(1− 1
2
µ2),

ω(k+1/2) = 1/(1− 1
4
µ2ω(k)) (k = 1

2
, 1, 3

2
, . . . ,∞).

(33)

The first half iteration with ω(0) is the first sweep of the odd points in the mesh,
whereas the second half iteration with ω(1/2) is the first sweep of the even points;
the third half iteration is then the second sweep of the odd points, and so on. The
algorithm for ω in equation (33) results in an over-relaxation factor which starts as
ω = 1 (Gauss–Seidel) and grows to ωb as k → ∞. This procedure provided a much
improved rate of initial error decay over the standard SOR process and provided
stable and rapid convergence for Ψi,j over a range of Reλ from 509 to 105, even as
the crossflow became extremely complicated and rich in recirculation eddies.

The procedure in equation (33) was implemented anew each time the vorticity was
updated during a given timestep. At a typical timestep before crossflow recirculation
zones develop, the streamfunction solution converged rapidly requiring only a few
iterations for each vorticity iteration. As the crossflow streamline patterns became
very complicated, the procedure was iterated up to 100 times on the streamfunction
equation for several cycles, for each of the vorticity iterations at a given timestep; then
a rapid decay to one iteration per vorticity iteration was observed. Experience showed
that this method of initially iterating a large number of times on the streamfunction
equation before returning to the vorticity iteration was most efficient, although the
value selected of 100 iterations is somewhat arbitrary. Once the crossflow problem
converged at a given timestep, the streamwise velocity equation was solved using
calculated values for the crossflow velocities V and W .

Calculations were performed with a number of mesh sizes and timesteps as a
check on accuracy. Typically, 1000 mesh points were eventually used in the spanwise
direction along with 400 points in the wall-normal direction. A maximum of 1500
spanwise points was used before computer resource limits were effectively reached.
Application of the mesh transformations described in the previous section allowed
the mesh to be focused locally by adjusting the values of the parameters b and
β in equations (28). The spanwise dimension of the problem was held constant at
z+ = 1

2
λ+ (with a constant λ+ = 100). The wall-normal mesh distribution was also

influenced by the choice of y+
max, defining the location of the outer boundary. As

a calculation proceeds in time, the wall layer thickens owing to viscous diffusion,
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Reλ β b z+
0 y+

max Ymax

10 000 5 50 12.6 126.5 795
20 000 5 50 12.6 89.4 795
30 000 5 50 12.6 38.8 422
35 000 5 50 12.6 36.0 422
50 000 6 50 14.3 30.0 422
75 000 6 50 15 20 344
∞ 3 50 18.7 15.0 211

Table 1. Mesh control parameters β, b, z+
0 and y+

max (corresponding Ymax shown).

with complex recirculation regions forming in the streamlines near the wall and
wall-generated vorticity migrating outward. With increasing Reλ, it was possible to
use smaller values of y+

max because a thinner and more active wall layer formed and,
in addition, the calculation terminated at an earlier elapsed time. The parameters
used to define the final mesh for the various Reynolds numbers reported here are
given in table 1†. (Note that solutions were produced at other values of Reλ, but the
information in table 1 provides the trend with Reynolds number.) The parameters in
table 1 provided a resolution in (y+, z+) space of ∆y+ ∼ 0.02 in the near-wall region
y+ 6 1, and ∆z+ ∼ 0.02 in the region z+

0 ±2. A maximum mesh spacing of ∆z+ ∼ 0.23
occurred at z+ = 1

2
λ+, while the maximum ∆y+ value used in the region y+ 6 10 was

0.1.

4. Spectral solution
The solutions of the model problem were found to be unexpectedly complex, espe-

cially at high Reλ, and in order to provide an independent check on the finite-difference
results, the model problem was also solved using a spectral method. The details are
similar to that in Ece, Walker & Doligalski (1984) and can be found in Brinckman
(1996). During a typical calculation, the vorticity and crossflow streamfunction were
expanded according to

ζ =
2
√
τχ

Reλ
sinZ − 1

2
√
τ

∞∑
n=1

G̃n(χ, τ) sin (nZ), (34)

and

Ψ = −2
√
τχ sinZ − 2

√
τ

∞∑
n=1

F̃n(χ, τ) sin (nZ), (35)

in terms of the variable Z and the Rayleigh variable χ, defined in equation (21). The
expansion for the streamwise velocity is

u+ = u0(χ, τ) +

∞∑
n=1

un(χ, τ) cos nZ. (36)

† A referee has suggested that in order for the limit problem as Reλ → ∞ to be the same as for
the impulsively started circular cylinder, the value of Ymax should have been selected so that Ymax

varies explicitly as Re
−1/2
λ . It may be confirmed that the values quoted in table 1 conform roughly

to this trend. Note, however, that different values of Ymax were considered for each Reλ, and the
results are believed to be independent of Ymax.
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Here, G̃n, F̃n, uo and un are functional coefficients satisfying a coupled set of par-
tial differential equations obtained by substitution of the expansions (34)–(36) into
equations (14)–(16), and use of standard methods for orthogonal functions.

Numerical solutions for G̃n, F̃n and un were obtained for various Reynolds numbers.
In general, each series must be truncated at some value of n = N. As the crossflow
solution became increasingly complex, an increasing number of Fourier terms N was
required to resolve the flow field, particularly for the vorticity solution. Generally,
fewer than 30 terms were needed to resolve the crossflow solution at early times,
before the solution began to develop appreciable spanwise gradients. At any timestep,
N coupled tri-diagonal matrix problems must be solved; the spectral method was
very efficient as long as the flow field was relatively smooth and N could be taken as
less than 100. At each timestep a check on the Nth mode of the vorticity coefficient
at the wall was made to ensure that the number of terms used was large enough
to maintain the value of G̃N several orders of magnitude less than the leading-order
term G̃1, corresponding to the first term in the sum on the right-hand side of equation
(34). This provided a sufficiently well-converged series solution such that additional
terms yielded no apparent increase in the resolution of the flow field. In the terminal
stage of some of the calculations, as many as 800 terms were required to resolve the
complex patterns in the crossflow field; at this stage, the spectral method was far
less efficient than the finite-difference method, and the spectral method had to be
abandoned. For this reason, it was generally not feasible to continue the integration
all the way to the breakdown times using the spectral method.

The number of Fourier modes used in the streamwise problem was, in general, less
than the number N used for the crossflow problem. Similar to the crossflow problem,
the number of Fourier terms used in the streamwise problem was increased as the
flow became increasingly complex. A check was made at each timestep and, generally,
a maximum of 100 to 200 modes for the streamwise problem was required in the
terminal stages of a solution.

5. Results
Numerical solutions to both the crossflow and streamwise problems were obtained

for a range of Reynolds numbers from Reλ = 509 to 105. Experiments suggest λ+

is a constant over a wide range of Reynolds numbers and Reλ = W1λ
+/2π was

increased by maintaining λ+ = 100 corresponding to the average streak-spacing,
and increasing W1. A number of timesteps were used as a check on the accuracy.
Typically, the solutions were advanced in time using a timestep ∆τ = 0.001 for all
Reynolds numbers; this value provided rapid convergence and halving the timestep
size produced no perceivable change in the solutions. Results are presented with
respect to the scaled time τ defined by equation (13) and the conventional turbulence
variables defined by equation (1). The scaled time τ is non-zero at t+ = 0, and as the
value of W1 is increased, the initial time τ0, corresponding to t+ = 0, also increases. To
allow a consistent comparison between various Reynolds numbers, calculated results
are presented in terms of an elapsed time τe, defined as τe = τ− τ0. The subscript is
dropped for simplicity and all subsequent figures and discussions use the symbol τ to
represent elapsed time.

Increasing values of W1 imply a stronger vorticular motion in the external flow.
The limit problem Reλ →∞ in the crossflow plane motion is identical to that for the
boundary layer on an impulsively started circular cylinder, for which the surface layer
is known to erupt in a spiky manner at τ ≈ 3 indicating the onset of interaction (Van
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Dommelen & Shen 1980, 1982). The present results show that the adverse spanwise
pressure gradient imposed near the wall by the outer flow always induces a pair of
recirculating regions, which are symmetric about z+ = 0 and are analogous to eddies
behind a circular cylinder in a uniform stream. The development following the onset
of crossflow separation is highly dependent on the Reynolds number. Solutions of the
problem have previously been obtained by Walker & Herzog (1988) for Reλ = 509 and
the limit problem (Reλ →∞) using a spectral approach. For Reλ = 509, the crossflow
solution approaches an apparently steady state, while the streamwise velocity profiles
continue to evolve, eventually exhibiting an inflectional behaviour; these solutions
were closely reproduced using the present finite-difference formulation, and solutions
were then obtained for a number of larger values of Reλ. Detailed computational
results are given by Brinckman (1996) and here only an abbreviated summary is given.
A main conclusion is that above a certain Reynolds number, an instability occurs in
the crossflow plane motion, which is characterized by the formation of high-frequency
oscillations in the streamwise vorticity field at certain specific locations. In fact, it
is possible to classify the motion into four Reynolds number ranges based on the
calculated crossflow behaviour; these ranges are as follows: (i) a ‘steady’ range for
Reλ < 5000 where the crossflow motion ultimately evolves toward a steady state;
(ii) a ‘stable’ range for 5000 6 Reλ 6 20 000 where the crossflow and streamwise
velocity solutions continue to develop with time, but the solution does not exhibit
a tendency towards either an instability or a local eruption; (iii) a ‘transitional’
range for 20 000 6 Reλ 6 35 000, where spanwise high-frequency oscillations in the
streamwise vorticity contours occur near certain alleyways associated with bifurcating
recirculation zones; in this range, the oscillations are eventually convected away from
their point of origin and do not grow or affect the external flow; and (iv) an ‘unstable’
range for Reλ > 35 000 wherein the vorticity oscillations appear in the wall layer, grow
rapidly with time and eventually penetrate and corrupt the external flow. Note that
because each calculation could require several weeks to complete on a workstation,
the Reynolds number ranges quoted here are only approximate.

The process leading to the formation of oscillations in the streamwise vorticity
is very complicated, and it is useful to show first the critical stages in development
schematically. Figure 2 shows important elements in development of the vorticity field
along with companion schematics of the crossflow motion. The structure of the flow
field can be conveniently characterized in the two-dimensional crossflow plane by
plotting the boundaries of recirculating eddies for the streamlines and the zero vor-
ticity lines. The contours plotted are from an actual calculation for Reλ = 50 000 and
are presented with a minimum of detail to clarify the physical mechanisms involved.
For informational purposes, the elapsed times for the Reλ = 50 000 calculation are
quoted, but the development in figure 2 should be regarded as characteristic over a
range of Reλ.

At early times, a thin layer of negative vorticity forms along the wall and diffuses
outward toward the positive vorticity in the outer flow. The adverse-pressure gradient
imposed on the wall by the external motion induces the evolution of a ‘primary’
recirculating eddy at the wall, as shown in figure 2(a); this is accompanied by the
formation of a corresponding region of positive streamwise vorticity, as shown in
figure 2(b). For sufficiently high Reλ, the primary eddy is observed to bifurcate into
multiple eddies through formation of a secondary eddy as shown in figure 2(c) near
z+ = 15. The secondary eddy forms at the wall under the influence of the local adverse
pressure gradient due to a portion of the primary eddy in much the same way as
described by Peridier et al. (1991a). The secondary eddy grows in a direction normal
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Figure 2 (a–f). For caption see facing page.

to the wall and eventually splits the primary eddy to form what will be referred to
as an ‘alleyway’ in figure 2(e). The flow within the narrow alleyway is primarily in
the normal direction, both up and down, but generally contains a small eddy. At
the base of the alleyway, values of the wall shear tend to develop a sharp negative
minimum. The strong updrafts in the alleyway convect local regions of wall-generated
vorticity outward in the form of almost spike-like fingers, as shown in the streamwise
vorticity contours in figure 2(f). Note in figure 2(e) that the primary eddy starts to
develop an outward growth in the form of a thick protruding finger, at about the
same spanwise location as the limit solution Reλ → ∞ eventually forms an eruptive
spike (Walker & Herzog 1988). The finger might be regarded as the analogue of the
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Figure 2. (a, b) Schematic of the wall-layer in the crossflow plane following formation of the primary
recirculating eddy (τ = 1.78). (a) Crossflow streamlines; (b) streamwise vorticity. (c, d) Schematic of
the wall-layer development in the crossflow plane following formation of the secondary recirculating
eddy (τ = 2.40). (c) Crossflow streamlines; (d) streamwise vorticity. (e, f) Schematic of the wall-layer
development in the crossflow plane following alleyway formation in the primary eddy (τ = 2.76).
(e) Crossflow streamlines; (f) streamwise vorticity showing growth of vorticity fingers from the
wall. (g, h) Schematic of the wall-layer development in the crossflow plane following the onset of
instability (τ = 2.86). (g) Crossflow streamlines; (h) streamwise vorticity with oscillations in the
zero-vorticity contour. (i) Streamwise vorticity contours in the crossflow plane; magnified view of
the oscillations in (h). (j) Local streamwise vorticity contours in the cross-flow plane for a Reynolds
number in the unstable range (τ = 2.96).

limit solution separation spike, but having finite thickness at finite Reλ; indeed, in an
effort to verify this, calculations were run up to Reλ = 105 (with increasing difficulty),
and a progressive decrease in width of the protruding finger shown in figure 2(e)
was observed. The formation of the alleyway is a new feature, however, which is not
observed in the boundary-layer solution (Walker & Herzog 1988).

In the stable range (Reλ < 20 000), alleyways were observed to form in the primary
eddy and then subsequently close up without any evidence of significant interaction
with the external flow. On the other hand, in the transitional range and above (Reλ >
20 000), where vorticity oscillations were observed, the alleyway in the streamline
patterns is sustained such that the vorticity ‘fingers’ continue to move outward from
the wall. As the positive-vorticity finger nears interaction with the positive vorticity of
the outer flow, high-frequency oscillations develop in the local zero-vorticity contour,
as illustrated in figure 2(h). A close-up of the evolution of the vorticity fingers just
following the onset of the instability is shown in figure 2(i) for the situation depicted
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in figure 2(h). As illustrated in figure 2(i), the oscillations become prominent just
before the positive-vorticity finger merges with the positive vorticity of the outer flow;
eventually, a merger occurs as shown in figure 2(j). The onset of the oscillations was
always preceded by the development of a local absolute negative minimum in wall
shear in a narrow spanwise band centred on the alleyway; with the appearance of
the oscillations, this minimum in wall shear relaxes and is dramatically reduced. For
Reλ > 35 000, the process appears strong enough to drive the disturbance ultimately
all the way into the outer flow. In general, the oscillations appear to persist as
long as the alleyway in the primary eddy remains open. In the transitional range
and above, the phenomenon of an alleyway and fingers of wall-generated vorticity
protruding outward to produce oscillations in the streamwise vorticity was observed to
repeat itself at various spanwise locations, thereby potentially giving rise to multiple
breakdown sites.

For Reλ < 20 000, the wall layer evolved with the same basic crossflow charac-
teristics shown schematically in figure 2, with the exception that the interaction of
the outer-flow within the alleyway does not appear to be strong enough to drive the
same instability observed for Reλ > 20 000. For example, figure 3 shows the crossflow
development at Reλ = 10 000. The general structure of any two-dimensional flow can
be deduced by plotting the boundaries of recirculation zones (Ψ = 0 contours) and
critical points either at an eddy centre (shown in figure 3 as a dot) or on the eddy
boundaries; this is done in figure 3 to provide only the essential details and the general
paths of additional streamlines can easily be inferred. At τ = 3.95, figure 3(a) shows
a prominent alleyway in the crossflow streamlines, along with the development of the
characteristic vorticity finger protruding from the wall at z+ ≈ 11.5 in figure 3(b). At
τ = 4.75, a second alleyway is about to open up near z+ ' 16 as shown in figure
3(c), but notice that the primary (first) alleyway has now closed. The vorticity finger,
corresponding to the primary alleyway, which is still prominent in figure 3(d), begins
to subside at later time and never grows to penetrate with the external flow region.
Finally, at τ = 9.1, figure 3(e) shows a crossflow structure which is rich in wall-layer
eddies but lacking a prominent alleyway to permit a strong local interaction with the
outer flow. As a result, the corresponding zero-vorticity contours in figure 3(f) do not
possess the prominent spiking shown schematically in figure 2(f), which lead to the
vorticity oscillations observed at higher Reynolds numbers.

The opening and closing of the alleyways, as well as the cascade to progressively
smaller eddy structures near the wall, was to some extent unexpected, and considerable
effort was made to ensure that the observed phenomena were physical and not
associated with numerical error. Additional support for such behaviour is available
in the work of Loc & Bouard (1985), who have computed the initial flow past a
circular cylinder at high Reynolds number using the Navier–Stokes equations, for a
flow which is symmetric about the downstream radius. Their results compare well
with experimental flow visualization studies of Bouard & Coutanceau (1980) and
predict the formation of a strong secondary eddy inside a primary eddy attached to
the cylinder surface. At high Reynolds number, the secondary eddy was observed
to grow and split the primary eddy; with the passage of time, multiple secondary
eddies formed within the primary recirculation zone which split and reclosed in an
evolution where, according to Loc & Bouard (1985), ‘the secondary vortices interact
alternatively with the external flow and the main wake’. In fact, the results of Loc &
Bouard (1985) at their Reynolds number of 9500 are strikingly similar to the present
results at Reλ = 10 000. Loc & Bouard (1985) also report local ‘peaks of vorticity’ at
the wall which are associated with the presence of the secondary eddies above; the
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Figure 3. (a, b) Crossflow solution for Reλ = 10 000 at τ = 3.95. (c, d) Crossflow solution for
Reλ = 10 000 at τ = 4.75. (e, f) Crossflow solution for Reλ = 10 000 at τ = 9.1. (a, c, e) Instantaneous
streamlines; (b, d, f) contours of streamwise vorticity ζ = 0.

magnitude of these peaks, generally, was observed to increase with Reynolds number,
which is consistent with the present results for the crossflow shear. Additionally, in the
two-dimensional unsteady Navier–Stokes solutions for a driven cavity flow carried
out by Shen (1991), recirculating corner eddies were found to develop over a range
of Reynolds numbers. Shen (1991) classified the behaviour into three categories. The
solutions at low Reynolds numbers were found to converge to a steady state, while
in an intermediate range of Re; the flow became periodic in time. Above a critical
Re, the solutions lost periodicity and did not converge to a steady state. Results at a
Reynolds number in the intermediate range predicted the formation of a secondary
eddy below the primary eddy. This secondary eddy formed and subsided periodically
with time. At higher Reynolds numbers, Shen (1991) reports that corner eddies split
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Figure 4 (a–d). For caption see facing page.

into two separate vortices, and the resulting alleyway was sustained for a period
of time before the eddies coalesced. At the higher Reynolds numbers investigated
in the present study, the complexity of the eddy structure increased with Reynolds
number as eddies bifurcated and rejoined without evolving to a steady state in a
behaviour consistent with the results of Shen (1991). Recently, similar behaviour has
been observed in Navier–Stokes solutions for a thick-core vortex convected above a
plane wall (Obako & Cassel 2000).

In the present transitional range (20 000 6 Reλ < 35 000), once an alleyway to the
wall opens up, oscillations in the vorticity field occur eventually above the alleyway.
The transitional range is characterized by the fact that the oscillations are convected
away, toward z+ = 0, and by and large do not increase in the process or penetrate
toward the outer region. A typical case at the upper end of the transitional range is
shown in figure 4 for Reλ = 35 000. Figures 4(a) and 4(b) show the streamlines and
streamwise zero-vorticity contours at τ = 3.08, just after the onset of the instability.
Notice the prominent alleyway which produces the vorticity finger at z+ ≈ 13.5. The
local grid is superimposed over the vorticity oscillations in figure 4(c) to show that the
instability can be adequately resolved on the present numerical mesh. Subsequently, at
τ = 5.11, a second alleyway has developed and a second site of vorticity oscillations
at z+ ≈ 14 has been triggered, as shown in figures 4(d) and 4(e). Note that the
initial alleyway and associated vorticity oscillations have moved to near z+ = 6. As
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Figure 4. (a, b) Crossflow solution for Reλ = 35 000 at τ = 3.08. (a) Instantaneous streamlines; (b)
contours of streamwise vorticity ζ = 0; magnified view of oscillations shown in window. (c) Vorticity
oscillations superimposed over the finite-difference mesh. (d, e) Crossflow solution for Reλ = 35 000
at τ = 5.11. (d) Instantaneous streamlines; (e) contours of streamwise vorticity ζ = 0; additional
contours of positive vorticity local to instability shown in upper window. (f, g) Crossflow solution
for Reλ = 35 000 at τ = 5.8. (f) Instantaneous streamlines; (g) contours of streamwise vorticity
ζ = 0; additional contours of positive vorticity local to instability shown in upper window.

the crossflow motion develops further, figures 4(f) and 4(g) show a third alleyway
which has formed at τ = 5.8 leading to a third instability near z+ ≈ 15.5. At the
same time, a fourth site appears to be developing near z+ = 18. Additional vorticity
contours in the outer-flow region are plotted in the window of figures 4(e) and 4(g)
to illustrate the outward propagation of the instability; these contours of positive
vorticity in the outer-flow region have developed an oscillatory behaviour apparently
due to the disturbance from the wall-layer instability as it has continued to grow
outward with time. This case is approximately the upper limit of the transitional
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regime and for cases with Reλ < 35 000, the oscillations tend to be convected away
from the alleyway in which they were born and then apparently damped out. A
strong effect on the outer-region vorticity is only predicted for Reλ > 35 000 and a
breakdown occurs at earlier times as the Reynolds number is increased. Figure 5 shows
the temporal development of the dimensionless cross-stream wall shear (∂w+/∂y+)
for Reλ = 35 000, and depicts the local peaks in negative wall shear which occur at
the spanwise location of the alleyway, reaching an absolute minimum just prior to
the onset of oscillations in the streamwise vorticity contours; with the onset of the
vorticity oscillations, the peak relaxes significantly. The peak in wall shear at τ = 2.9
corresponding to the first alleyway is clearly of the largest magnitude, and this value
consistently increases with an increase in Reynolds number. Note the dip in wall
shear at τ = 4.97 near z+ = 14.5, which precedes the onset of the oscillation shown
in figure 4(e), is associated with the opening of the second alleyway. A similar event
occurs with a negative peak at τ = 5.67 near z+ = 16.5 in figure 5, and this heralds
the evolution of an instability associated with the third alleyway that is evident in
figure 4(g). These wall shear peaks provided a reliable precursor to the onset of
vorticity oscillations for all Reynolds numbers where the instability occurred. Lastly,
consider a case well within the unstable regime; in figure 6 vorticity contours near the
terminal stages of a calculation for Reλ = 50 000 are shown at τ = 4.54. A comparison
with figure 4(g) illustrates how the wall-layer instability grows and interacts more
prominently with the external flow at an earlier time. In such cases, the calculations
were terminated once the instability approached the upper computational boundary.

For the streamwise problem, streamwise velocity profiles were plotted along with
surface contours of the streamwise velocity, the latter being a three-dimensional plot
of the magnitude of streamwise velocity over the extent of the crossflow plane. In
essence, the surface plot consists of an infinite number of adjacent u+ profiles across
the span, thereby providing a complete picture of the streamwise velocity. Individual
profiles are also plotted at various spanwise locations in order to reveal the potential
presence of inflection points in the streamwise profiles; such points suggest that the
motion might be inviscidly unstable to small disturbances. Walker & Herzog (1988)
noted the development of a strong inflectional behaviour in the streamwise velocity
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profiles at low Reynolds numbers (Reλ = 509). Figure 7 illustrates the development for
Reλ = 10 000 for a select sequence of times. In figures 7(a)–7(d), results are plotted to
y+ 6 15, but the scale of figures 7(g) and 7(h) is expanded to y+ = 30 to accommodate
the fact that the outward flow near z+ = 0 continuously convects deformations in the
streamwise velocity profiles towards the outer boundary. Figures 7(a) and 7(b) show
results for the streamwise velocity at the early time τ = 1.0. Near the outer boundary,
the outer flow sweeps across the crossflow plane toward z+ = 0; fluid with high-speed
streamwise velocity is brought in near z+ = 50, and the streamwise velocity of the fluid
leaving the domain between z+ = 0 and z+ = 25 is progressively reduced. As time
continues, the streamwise velocity profiles at spanwise locations of z+ < 30 exhibit
varying degrees of inflectional behaviour and dimples form in the surface contour.
This behaviour is directly associated with the zones of recirculation that form in the
crossflow plane as illustrated in figures 7(c) and 7(d); in figure 7(c), the boundaries
of the recirculating eddies are superimposed on the streamwise velocity contour. The
profiles are strongly inflectional when under the influence of the developing crossflow
recirculating eddies. It appears that the fluid trapped within the eddies is continuously
recirculated past the wall where it is decelerated. The transition back and forth between
high and low speed within the eddies gives rise to the inflectional behaviour in the
streamwise velocity profiles. The streamwise motion above the eddies retains the basic
logarithmic profile of a turbulent boundary-layer flow, but it is worthwhile to note
that the particular boundary condition for the streamwise profile at y+∞ has little effect
on the development near the wall, and external conditions other than (8) produce
similar results to those obtained here. Note that the profiles at z+ = 30–50, never
exhibit an inflectional behaviour, as the crossflow recirculation is confined to z+ < 25,
and does not influence the streamwise motion at z+ > 30. The temporal development
of the surface contours provides revealing insight into the evolution of the streamwise
velocity. Figure 7(e) shows the continued development of a local deficit or ‘dimple’
in the streamwise velocity surface corresponding to the location of the primary eddy
at τ = 3.95. As time increases, the dimple in the surface contour grows and becomes
increasingly prominent. By τ = 9.1, the primary crossflow eddy begins to thin and
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move outward near the z+ = 0 boundary; as this occurs, the low-speed dimple in
the streamwise velocity surface contour shown in figure 7(g) also moves dramatically
outward to occupy the region from y+ = 0 to 30 near the z+ = 0 boundary. The
flow is independent of the streamwise direction, and if hydrogen bubbles or dye were
injected in such a flow field near y+ = 0, a prominent low-streamwise speed region
would be marked near z+ = 0, particularly at the dimple; this region would move
toward the symmetry plane at z+ = 0 and outward towards y+∞ with time. The profiles
of u+(y+) at τ = 9.1 in figure 7(h) show a highly inflectional behaviour coincident
within the recirculation region of the crossflow streamlines depicted in figure 3(e).
With increasing Reynolds number, the streamwise behaviour becomes more severe
and complex. An example is shown in figure 8 at Reλ = 50 000, where the dimple
thins and moves rapidly outward toward the outer boundary with time. The region
near the dimple is characterized by multiple inflection points in streamwise velocity,
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as well as significant ranges in the normal direction where the velocity is almost
zero. This case is believed to be approaching to the limit of what can be computed
accurately with the current computational resources.

Before discussing phenomenology related to the present results, it is important to
address the question of whether the apparent instability in the crossflow solution is
physical or whether it might be associated with the numerical solution. First, the effect
of computational mesh size will be discussed. In all cases, initial calculations were
carried out with a uniform mesh in the y+-, z+-directions, with the finest mesh having
400 and 1000 points, respectively. At higher values of Reλ, the vorticity contours
began to develop a noise-like character typical of that shown in figure 9(a) at τ = 2.86
for Reλ = 50 000. This apparent anomaly was always associated with the spanwise
location of the alleyway predicted in the crossflow streamlines. In order to better
resolve this region, the mesh transformations (28) were introduced. As increasing
numbers of mesh points in z+ were focused into the zone near where the alleyway
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ultimately appears, the vorticity contours more clearly revealed the wavelike instability
shown in figures 9(b) and 9(c). The value of β = 6 in figure 9(c) provides a tighter
concentration of points around z+ = 14.3 than for β = 5 in figure 9(b). Although the
growth of the instability in figure 9(c) slightly lags that in figure 9(b), the evolving
wavelike character is identical. The uniform mesh size for figure 9(a) is ∆z+ = 0.05,
while ∆z+ = 0.019 and 0.014 at z+ = 14.3 for β = 5 and 6, respectively. A subsequent
lengthy calculation with 400 and 1500 points in the normal and spanwise directions
showed the same evolution as in figure 9(c). Note that for values of β significantly
larger than 6, the mesh in the z+-direction is heavily skewed across the span, and
poor convergence of the solution was experienced. The use of the spanwise mesh
transformation provided the necessary spatial resolution in the vicinity of the initial
instability and made it possible to carry the calculation forward in time. As shown in
figure 4, vorticity oscillations subsequently appear at secondary sites associated with
new alleyway formation. Transformations which focus points into multiple regions are,
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in principle, possible but were not attempted here because of the complex unsteady
behaviour of the solution. Although the spanwise transformation (28) focuses the
computational mesh about one point Zo, the resolution in the neighbourhood of Zo,
including the locations of later instabilities, is finer than that of the uniform mesh
and apparently adequate to resolve the wavelike character. Moreover, the subsequent
occurrences of the instability appear to be essentially similar to the first, which was
clearly well resolved.

A number of other aspects of the calculations were also checked. First, consider
the timestep. Many sensitivity calculations were carried out, especially at the higher
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Reynolds numbers, where more intense activity occurred at smaller timescale, and it
was determined that a step of ∆τ = 0.001 was adequate for all Reynolds numbers
considered. In particular, for Reλ = 50 000, calculations were also run for ∆τ = 0.0005
and 0.0001, and the results showed that the development of the wavelike instability
was independent of timestep. This suggests that the instability is not a consequence
of insufficient temporal resolution. Secondly, to check that the predicted oscillations
were not related to inadequate iteration convergence, the case for Reλ = 50 000 was
rerun in its entirety with the relative convergence criterion on the vorticity, stream
function and streamwise velocity solutions reduced from 10−4 to 10−5; again, no
significant differences in the solutions were observed. Thirdly, a referee has suggested
that use of the SOR algorithm for the stream function equation may be suspect, and
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so the calculations were also rerun using standard Gauss–Seidel iteration; again, no
differences were observed.

Lastly, to provide further confidence that the phenomena predicted in the finite-
difference solutions are physical, spectral calculations were performed at several
Reynolds numbers for comparison. As discussed in § 4, the number of Fourier modes
required to resolve the crossflow solution beyond a certain stage quickly became
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prohibitively large at high Reλ. The spectral solutions did, however, verify the predic-
tion of some prominent features, including the alleyway in the crossflow streamlines,
vorticity fingers protruding from the wall, wall-shear spikes, and the low-speed dimple
in the streamwise velocity. Detailed comparisons between the two methods are given
by Brinckman (1996), and here the spectral results will be summarized briefly. At
early times for any Reλ, the two methods give virtually identical results. However, as
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the crossflow solution becomes increasingly complex, eventually the spectral method
is unable to cope with the developing intense variations in the spanwise direction,
even with more than 800 terms. Significant anomalies with the spectral method first
show up in the vorticity field where high-frequency oscillations are seen over an area
in the computational domain; this behaviour is eventually observed in the streamlines.
As an example, consider the results shown in figure 10 for Reλ = 50 000 at τ = 2.76,
where oscillations over a substantial portion of the field occur in the spectral method;
at a previous time τ = 2.57, the streamline patterns by either method are identical
(Brinckman 1996), but oscillations occur in the spectral solution for the vorticity field
over a substantial part of the computational domain. It is worthy of note that both
methods predict the formation of a primary alleyway (figure 10a, b), as well as the
corresponding vorticity finger (figure 10c, d). At this point in the spectral calculation,
666 Fourier modes were required to produce the resolution shown and, although the
onset of oscillations in the spectral method can be briefly delayed by introducing
additional Fourier modes, it is evident that the spectral method is not useful by this
stage. Furthermore, the spectral technique could not be counted on to reliably detect
the instability that occurs soon after τ = 2.76. This difficulty with spectral methods is
reasonably well known. If the flow field is relatively smooth in space, a spectral tech-
nique is accurate and typically more efficient than a corresponding finite-difference
method. However, if local regions of intense variation start to form, an increasing
number of terms are required in a spectral method, and, ultimately, a failure can occur
(of the type depicted in figure 10), where the entire solution is corrupted by spurious
high-frequency oscillations. In contrast, in a finite-difference method, computational
resources can be focused in regions of intense variation through use of a non-uniform
mesh. The calculations can then be continued reliably beyond the stage shown in
figure 10 when the instability develops.

6. Discussion
A number of aspects emerge from the present study which are consistent over the

range of Reynolds numbers investigated and which are probably relevant in other
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two-dimensional problems involving separation. In addition, the results may offer
some insight into the dynamics of a turbulent boundary-layer flow, as well as a
further possible mechanism for regeneration other than that described by Smith et
al. (1991). The principal features of the wall-layer evolution observed here are: (i) the
development of a concentrated region of severely retarded streamwise velocity near
the common outflow plane between vortices, which is accompanied by inflectional
behaviour in the streamwise velocity profiles; (ii) the formation of a recirculation zone
in the crossflow plane and the continual splitting of this region to produce numerous
eddies at progressively smaller scales; (iii) the formation of alleyways in the crossflow
recirculation region, which precede the vorticity oscillations and provide the physical
mechanism which eventually drives the instability; (iv) the onset of high-frequency
oscillations in the streamwise vorticity contours at sufficiently high values of Reynolds
number, suggesting the onset of a wall-layer instability; and (v) a strong correlation
between the occurrence of a sharp peak in local wall shear and the subsequent onset
of the vorticity oscillations. In this section, these features are discussed, as well as the
possible relationships to the turbulent boundary layer.

Consider first the streamwise problem. Fluid with high streamwise momentum in the
outer part of the boundary layer is carried in towards the wall by the vortex motion at
periodic spanwise intervals (e.g. z+ = 50), and near the down-flow side of the vortex,
the streamwise profiles are relatively full. A local deceleration of the streamwise
velocity must take place to satisfy the no-slip condition at the wall. The action of the
external vortex sweeps this fluid with low streamwise momentum toward the outflow
side of the vortex, and lifts it away from the wall. Thus, the streamwise profiles
near the outflow plane (e.g. z+ = 0) are much less full, where low-speed fluid then
displaces high-speed fluid above. The foregoing discussion is the common kinematical
explanation of why alternate regions of high- and low-speed flow are observed in
the turbulent wall layer, but is less revealing of other behaviour associated with
the low-speed streaks. The present results suggest additional dynamical features that
may be useful in the interpretation of near-wall turbulent behaviour. Once crossflow
recirculating eddies occur, the streamwise velocity profiles on the outflow side of the
vortex develop inflection points, and in the surface contours of streamwise velocity,
a dimple of severely retarded streamwise velocity forms near the z+ = 0 boundary;
this would appear as part of a low-speed streak. The significance of the dimple
is that low-speed fluid becomes trapped near the wall by the recirculating eddies
in the crossflow, as illustrated in figures 7(c) and 7(d), rather than merely being
decelerated at the wall and then swept outward. This concept of a concentrated
dimple of low-speed fluid appears consistent with the observations of Kline et al.
(1967), who remarked that low-speed streaks persist right to the wall and drift slowly
outward with time, thinning as they move out of the inner region and beginning
to oscillate when they reach y+ ∼ 8–12 (see figure 7). An interesting feature of the
unstable range of Reynolds numbers (Reλ > 35 000) in the present study is that the
dimple grows outward in close proximity to the region of instability in the crossflow
plane, suggesting that in a fully three-dimensional simulation the crossflow instability
may impart an oscillatory type of effect to the low-speed region, consistent with the
oscillations of low-speed streaks observed by Kline et al. (1967), Kim et al. (1971),
Acarlar & Smith (1987b), and Swearingen & Blackwelder (1987).

Inflectional behaviour is a common criterion used for assessing the potential in-
stability of a predominantly streamwise flow since a necessary condition for an
inviscid instability in steady flow is that the base profile u(y) must have a point
of inflection at y0. In their experimental investigation of the breakdown of Görtler
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vortices, Swearingen & Blackwelder (1987) found that both the spanwise and stream-
wise velocity profiles became inflectional. A close correlation between spanwise shear
(∂u/∂z) and oscillations in streamwise velocity in their measurements led Swearingen
& Blackwelder (1987) to conclude that peaks in the spanwise shear were the main
precursor of instability. In an experimental study of the role of streamwise vortices
in the transition to turbulence, Hamilton & Abernathy (1994) also identified inflec-
tional profiles in both spanwise and streamwise velocity profiles for both laminar
and transitional flow over a flat plate. The observation that laminar flows exhibited
inflectional behaviour led Hamilton & Abernathy (1994) to the conclusion that a
simple argument based on the presence of an instantaneous inflection point is in-
adequate for predicting instability. A similar observation was reported for turbulent
boundary-layer flow by Kim et al. (1971) who suggested that although the occurrence
of an instantaneous inflectional streamwise velocity profile often leads to a growing
oscillation and breakup, it does not always do so. Thus, the significance of inflectional
velocity profiles in a time-dependent (and often non-parallel) flow as a predictor of
boundary-layer instability and bursting remains uncertain. In the present study, severe
distortions of the streamwise and spanwise profiles were produced by the convective
effects associated with the crossflow recirculating eddies. The results for Reλ = 10 000
in figure 7(f) clearly show inflection points in the u+(y+) profiles at z+ < 30. The
inflectional behaviour worsens with an increase in time as the low-speed dimples
become more prominent in the surface contours of streamwise velocity magnitude
(figure 7(h)). However, as time proceeds, the inflectional behaviour does not lead to a
breakdown of the Reλ = 10 000 solution. Note, however, that the present simulation
is limited because the motion is independent of the streamwise coordinate; in a full
three-dimensional model, it is possible that instability associated with the streamwise
profiles could occur. Inspection of spanwise and streamwise profiles for the unstable
case of Reλ = 50 000 at times τ = 2.76 and τ = 2.96 shows that inflectional points
exist both before and after the onset of the crossflow instability at τ = 2.83 (Brinck-
man 1996). The crossflow solution is independent of the streamwise solution, and
despite the highly inflectional profiles in streamwise velocity, the mechanism driving
the crossflow instability is associated only with the crossflow solution.

The prediction of a crossflow instability at finite Reynolds number is significant.
For the case of infinite Reynolds number, Van Dommelen & Shen (1980) showed
that an unsteady separation singularity occurs at finite time (τ ≈ 3) for an impulsively
started cylinder. The limit problem Reλ → ∞ here is identical to that for the circular
cylinder and thus develops a singularity in the crossflow solution (Walker & Herzog
1988). In contrast, the present Navier–Stokes solutions predict an instability in the
crossflow plane which exhibits high-frequency oscillations in the streamwise vorticity
around τ = 3 that grow steadily with time. These solutions do not develop a focused
eruptive behaviour, even by the stage where the calculations were terminated. This
suggests that either the spanwise diffusion term in the crossflow momentum equations
or normal pressure gradients (see, for example, Li et al. 1998) act to suppress the sharp
eruptive behaviour predicted at infinite Reynolds number; in any event, the crossflow
eddies bifurcate and oscillations develop in the streamwise vorticity without a focused
breakdown. In the transitional range, the vorticity oscillations are evidently suppressed
by viscous effects as the recirculating eddies confine the instability to the near-wall
region. In the unstable range, the oscillations propagate all the way to the outer
flow and this behaviour ultimately terminates the calculation. Considerable effort was
made to extend the calculations to higher Reλ and, in particular, to Reλ = 105, in
an effort to tie on to the characteristics of the limit solution Reλ →∞ (Walker &
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Herzog 1988). The protruding growth of the primary eddy shown in figure 2(e) for
Reλ = 50 000 becomes progressively narrower as Reλ was increased to 75 000 and then
to 105; for Reλ = 105, it occupies a spanwise range of ∆z+ ' 1, thereby indicating
a possible tendency toward a spiky response as Reλ → ∞. However, for Reλ = 105,
multiple narrow alleyways opened up in the range z+ = 10–18, and oscillations were
observed around τ ≈ 2.4 as the vorticity instability penetrated the external flow.
Unfortunately, at this Reynolds number, there is so much intense activity occurring
at multiple sites that some of the calculated solution details were not considered
reliable, despite the fact that maximum computational resources were used.

A prominent feature of the solutions at finite Reλ produced in this study, which is
absent in the limit problem (Reλ →∞), is the formation of alleyways in the crossflow
recirculating eddies. The alleyways appear to be a plausible generic phenomena in
flows separating at high Reynolds numbers and provides a mechanism wherein sharp
gradients in wall shear are generated and wall effects are convected outward. High-
frequency bursts have not been seen in transition in free-shear layers (Maslowe 1985)
suggesting that viscous wall effects must play an important role in the wall-layer
breakdown. The present results point to the potential importance of alleyways in the
crossflow recirculation zones as a mechanism for communication between the outer
flow and the wall, in addition to the focused eruptions known to occur for very
high Reλ (Van Dommelen & Shen 1980; Smith et al. 1991; Smith & Walker 1995).
Here, the central characteristics of the instability process and the relation to alleyway
formation are summarized:

(a) In the transitional and unstable range of Reynolds number discussed in § 5,
the alleyways convect wall-generated vorticity outward in finger-like protuberances
resulting in a focused interaction of positive wall-generated vorticity with the positive
vorticity of the outer flow. The interaction occurs shortly after oscillations appear
in the streamwise vorticity just upstream. For stable cases (e.g. Reλ = 10 000), the
initial alleyway subsides before an interaction with the outer flow occurs; a crossflow
instability does not occur.

(b) The high-frequency oscillations in the streamwise vorticity occur only at loca-
tions where alleyways form.

(c) An alleyway always produces a negative spike in spanwise wall shear, (∂w+/∂y+)
at y+ = 0, analogous to the peaks in vorticity observed by Loc & Bouard (1985) on
the wall of a circular cylinder. This spike in wall shear peaks immediately prior to
the onset of oscillations in the streamwise vorticity, and is a consistent precursor of
the crossflow instability. This result holds for instabilities in the primary alleyway as
well as in all subsequent alleyways.

(d) The magnitude of the negative wall shear peak that occurs just prior to the
onset of instability increases with Reynolds number (Brinckman 1996). For a given
Reynolds number, the largest magnitude of the wall-shear peak generally occurs for
the first alleyway.

(e) As Reynolds number is increased, the time to formation of the alleyway and
onset of the initial instability decreases in a consistent manner, as shown in table 2.
There is some uncertainty concerning the quality of the solutions for the two highest
Reynolds numbers, however, and it was not possible to determine whether τinstability
approaches a finite limit as Reλ →∞. It may be noted that the limit problem Reλ →∞
reaches a singularity at τ = 3.

For the results quoted in table 2, for sufficiently high Reλ, the onset of instability
precedes the time of evolution of a spike in the limit problem (Reλ → ∞). This is to
some extent consistent with the limit analysis of Cassel et al. (1996), who show that a
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Reλ τinstability

20 000 3.75
30 000 3.15
35 000 3.04
50 000 2.83
75 000 2.6

100 000 2.4

Table 2. Time to the onset of instability versus Reynolds number.

high-frequency instability develops along the zero vorticity line, prior to the formation
of a separation singularity, in the first interactive stage of separation as Reλ →∞.
However, it is far from clear that the two instabilities are related, since the work of
Cassel et al. (1996) depends crucially on the occurrence of a singularity; the present
results suggest that an instability comes into play well before there is any evidence
of the onset of a singularity. The high Reλ problem is apparently characterized by
multiple types of instability and even the limit problem Reλ →∞ may contain a large
wavenumber instability (Cowley, Hocking & Tutty 1985). It is also worthwhile to
note that interacting boundary-layer theory does predict the bifurcation of a primary
recirculation zone into multiple eddies in vortex-induced separation (Peridier et al.
1991b), as observed in the present study. However, the formation of the alleyways
and the subsequent instability is only revealed through the present Navier–Stokes
calculations. The present results are also similar to those obtained recently by Li et
al. (1998) who have considered the next stages of interaction beyond that described
by conventional interacting boundary-layer theory. These authors consider a further
stage where normal pressure gradients come into play, and this stage is then followed
by a process of strong wind-up into a local vortex, again suggestive of the formation
of multiple vortices. It may be noted that calculated results for the perturbation
pressure p1 (Brinckman 1996) show intense variations in the pressure near the wall in
both the spanwise and normal directions, particularly near the alleyways.

A referee has suggested that the present instability is likely to be a Rayleigh
instability which can occur once there is an inflection point in the crossflow profile
w+. It is true that there are multiple inflection points in w+ within the alleyways.
If the present instability is related to a Rayleigh instability, the wavenumber should

scale like Re
1/2
λ . The wavenumber k was determined from the numerical solutions

as follows. Once the onset of the vorticity instability was detected and at least eight
cycles were observed, the wavenumber was estimated from the graphs of the zero
vorticity line in the z+ coordinate using the four most recently formed cycles (see, for
example, the waves between z+ ' 14.1 and 14.3 in figure 4(c)). As the wave forms,
it is stretched out to the left end by convective effects, and so the uniform criterion
discussed for each Reλ was adopted. This is clearly an ad hoc criterion and the
determination of k from a wave in a complex flow field is necessarily imprecise and
somewhat objective. In any event, the values of k obtained in this manner do show a
trend and the raw data are shown in figure 11 (note that the wavenumbers identified
by this process for each Reλ were identical for values of Ymax other than those quoted
in table 1). A least-squares regression analysis for the function k = CoRe

βo produced
values of Co = 0.546 and βo = 0.5. Although some scatter is expected in the values
of k about this curve, it may be seen that the data in figure 11 are reasonably well
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Figure 11. Estimated wavenumber k for the onset of the instability and least-squares curve fit.

represented. This would seem to support the notion that the present instability is a
Rayleigh instability.

Several features predicted in the present study appear consistent with experimental
investigations of turbulent boundary-layer flow. Peaks in wall shear and wall pressure
have been reported as a precursor to the burst-sweep cycle in a turbulent boundary
layer by Thomas & Bull (1983) in wind-tunnel tests. Thomas & Bull (1983) discuss
peaks in measured wall pressure and a local deceleration of the velocity parallel to
the wall which they associated with large-scale motions due to the convection of
horseshoe vortices above the wall layer. Although the orientation of the outer-layer
flow structure considered in the present study may differ from that investigated by
the previous authors, several features related to the formation of the present alleyway
seem consistent with their findings. Calculated results for the pressure perturbation
p1 (Brinckman 1996) show a strong local variation in wall pressure associated with
the alleyways. This behaviour is consistent with the observations of Thomas & Bull
(1983), where strong wall-pressure variations are associated with a shear layer which
penetrates close to the wall just prior to a burst event. Furthermore, streamwise
velocity profiles, located in the alleyway region between z+ = 13.5 and z+ = 15.5 in
figure 10(b) (Brinckman 1996), illustrate how a portion of the alleyway draws fluid
of relatively higher streamwise velocity in towards the wall between z+ = 15.0 and
z+ = 15.1 in a region of otherwise strongly decelerated flow; this is reminiscent of
the ‘pockets’ described by Falco (1991), which are free of marker in an otherwise
marked turbulent wall layer. These comparisons to previous findings are not intended
to suggest that the precise structure of a turbulent boundary layer has been captured
with the present model. They do, however, demonstrate that there are features of
the present model problem and associated alleyway formation which are common to
observed characteristics of turbulent boundary-layer flow.

Finally, the question of how the predicted vorticity oscillations would be manifest in
visualizations of the flow is of interest. In a steady flow, streamlines represent particle
paths, and bubbles or other markers injected into the flow follow the streamlines. In
an unsteady flow, however, the instantaneous streamlines are not entirely revealing
about prior events and the instability is not apparent in the streamline plots. The
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vorticity oscillations here are far from the wall and are centred on the zero vorticity
contour. As oscillations develop on the zero-vorticity line in an essentially inviscid
region, particles making up the material line will also experience the oscillations; this
suggests that markers in the flow would reveal the predicted instabilities.

7. Conclusions
An instability in the developing wall layer beneath a counter-rotating vortex pair

has been identified in solutions of the Navier–Stokes equations at high Reynolds
numbers. The instability appears in the form of relatively high-frequency wavelike
oscillations in the streamwise vorticity contours which grow in amplitude with time.
Considerable effort has been expended to ensure that the observed oscillations are
grid independent. At sufficiently high Reynolds numbers, the oscillations eventually
penetrate the outer-flow region, suggesting that a breakdown of the local flow structure
is imminent. Detailed calculations show that alleyways between the outer-flow region
and the wall open up in the crossflow recirculating regions within the wall layer,
as it undergoes a process of continuous subdivision to finer scales. The formation
of the alleyway provides the mechanism for a strong local interaction with the
outer flow which appears to provoke the predicted instability. While the eddying
crossflow motion drives inflectional behaviour of the streamwise velocity profiles,
there is no evidence of unstable behaviour of the streamwise flow. As the Reynolds
number is increased, the near-wall activity in the crossflow solution becomes more
intense, but the instability continues to develop without a focused eruption of the
crossflow streamlines. Thus, the present instability provides another potential route to
breakdown of a viscous wall-layer flow, in addition to the focused eruption process
identified by Van Dommelen & Shen (1980, 1982) for the case corresponding to
Reλ →∞.

The present study may be important in a wider context (S. J. Cowley, private
communication), and the following paraphrases his comments (see also Cowley &
Stewart 2000). It has long been hoped that as the Reynolds number, Re, increases, the
unsteady boundary-layer equations would provide an asymptotic solution, as Re→∞,
to the Navier–Stokes equations which can be realized. It has been known for some
time that solutions to the unsteady boundary-layer equations are unstable to very
rapidly growing short wavelength disturbances (see, for example, Tutty & Cowley
1986); however, it has been thought that if such disturbances were not introduced
artificially by significant rounding or truncation errors, then these instabilities would
not invalidate unsteady boundary-layer solutions that were carefully computed. The
reasoning behind this viewpoint was that although the growth rate of the instabilities
is large, the amplitude of high-wavenumber modes generated by nonlinear self-
interactions would be so small that their growth by Rayleigh instabilities, etc. would
not be sufficient to prevent a boundary-layer calculation being carried out smoothly up
to, say, the point where the solution terminates in a Van Dommelen singularity. This
study provides evidence that the above view may not be correct and that terms which
are initially small can grow to disrupt the solution. On the basis of our calculations,
Cowley & Stewart (2000) have suggested a scaling argument that supports this
evidence for a boundary-layer flow, and demonstrates that the same scaling argument
applied to the certain asymptotic regimes of the Kuramoto–Sivashinsky equation
predicts similar behaviour that can be numerically confirmed.
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